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Start: October 1, 2018
End:   Sept. 30, 2021
Percent complete: 50%

Timeline

Budget
Total project funding: 

FY19  $4.0M
ANL, NREL, ORNL, LBNL, PNNL 

Barriers
Overview 

Development of PHEV and EV 
batteries that meet or exceed 
DOE and USABC goals
– Cost 
– Performance 
– Safety
– Cobalt content

Students supported from:
University of Illinois at Chicago
University of Rochester
Oregon State University

Team Members
ANL, NREL, ORNL, LBNL, PNNL 



 Lithiated layered oxides containing nickel, cobalt, and manganese, such as 
LiNi0.6Mn0.2Co0.2O2, are intercalation compounds used as positive electrodes in 
high-energy lithium-ion batteries
 To improve sustainability, lower cost, and minimize reliance on security critical 

materials, it is crucial to lower the cobalt content of the these layered oxides
 Our main objective is to develop layered oxides with little or no cobalt, while 

maintaining the high energy densities, performance, and safety characteristics of 
the higher-cobalt oxides
 Another objective is to identify mechanisms associated with the performance loss 

(capacity fade, impedance rise) that occurs during extended cycling and to 
develop cell chemistries that provide a pathway to achieving cobalt-free cathodes

There is an urgent need to lower the cobalt content of 
transition-metal-based layered-oxides being considered for 
high-energy lithium-ion batteries in vehicular applications

Relevance 



Approach 

Precursor Synthesis
(MERF)

Calcination Optimization:
Time, Temperature 
Half-cell performance 

validation

Oxide Scale-up,
Characterization 

(SEM, XRD DSC, PSA)  

Electrode coating 
(CAMP)

Distribution to team 
participants

Electrochemical testing
(coin, 3-electrode, pouch)

Gassing analysis

Electrochemical evaluation of 
oxide coatings and electrolyte 

additives

Cathode study by EChem, 
SEM, XRD, XPS, TEM

(Oxide structure changes, 
surface reaction products)

Anode study by EChem, SEM, 
XRD, XPS, Raman

(Graphite structure and SEI 
changes)

Separator/Electrolyte study by 
HPLC, GC-MS, SEM

(Pore clogging, electrolyte 
degradation, TM dissolution)

Oxide Development Full-cell Tests Post-test Characterization

Multi-institutional effort to identify and solve performance loss problems of 
full cells with low-Co layered-oxide cathodes

Also BAT251 & BAT253



LiNi0.9Mn0.1O2LiNi0.95Co0.05O2LiNi0.94Co0.06O2LiNi0.90Mn0.05Co0.05O2

All cathodes contain 90 wt% oxide, 5 wt% carbons and 5 wt% PVdF binder.
Anodes contain 92 wt% graphite, 2 wt% carbons and 6 wt% PVdF binder.
Capacity-balanced electrodes: N/P ratio at 4.2 V cell voltage is ~1.05 – 1.1

Technical Accomplishments and Progress

Electrodes fabricated at CAMP using oxides synthesized at 
MERF/CSE – SEM images from Post-test lab

See BAT 251, BAT167, BAT030



Standard Protocol
Evaluates charge and discharge capacity, 
kinetic losses, and high voltage 
instability/damage with 4.2 V and 4.5 V UCV

Rate Protocol
Evaluates discharge capacity at 4.3 V and 4.5 
V UCVs with 20, 60, 100, 200 mA/g (charge 
is 20 mA/g), and damage due to cycling

Test data help optimize synthesis conditions and validate electrochemical performance

Half-cell (Li anode) tests on newly-synthesized oxides
Technical Accomplishments and Progress

Electrochemical test protocols developed to evaluate oxide properties and performance
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Technical Accomplishments and Progress

Example data from standard protocol – 1st cycle metrics
Information on oxide capacities and kinetics limitations

1st cycle “irreversible” 
capacity loss can be due 
to material degradation or 
electrode overpotentials

Equal values of ‘Charge’ 
and ‘Discharge 2’ indicate 
that 1st cycle losses are 
kinetic rather than due to 
oxide degradation

Charge = Oxide delithiation
Discharge = Oxide lithiation
Discharge 2 provides information 
on kinetic limitations

All oxides show minimal material 
degradation during the 1st cycle
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3 cycles each of 20 mA/g charge and 20, 60, 100, 200, and 20 mA/g discharge (15  cycles at 4.3 V and 4.5 V)

Larger differences between oxide capacities
Higher Ni oxides display higher capacities

Technical Accomplishments and Progress

Example data from rate protocol – capacity, stability

Smaller differences between oxide capacities
Mn-containing oxides display higher stability

2.5 – 4.3 V 2.5 – 4.5 V
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Long et al., J. Electrochem. Soc. 163 (2016) A2999

Protocol provides information on cell 
capacity and impedance changes

Technical Accomplishments and Progress

Standard cycling protocols used 
for full cell tests
Protocol includes 3h hold at 4.2 V to accelerate aging

C/3

C/1

Capacity fade & 
Impedance rise 
during cycling Cell ASI rise 

(~3.8 V) ~ 90%

Capacity Fade 
(C/20) ~ 14%

HPPC 
Pulse #
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Technical Accomplishments and Progress

LiNi0.95Co0.05O2//Gr cell: 3.0-4.2 V, 30°C, ~120 cycles
Coin Cell - typical data
• Cell capacity and specific 

energy are excellent at the 
start but decreases on cycling

• Cell impedance progressively 
increases on cycling  

3-electrode cell data
• Cell impedance increase arises 

at the positive electrode.
• Negligible ASI changes at the 

negative electrode

Capacity Fade 
(C/20) ~ 18%

Cell ASI rise 
(~3.8 V) ~ 93%

Oxide electrodeGraphite electrode
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Technical Accomplishments and Progress

LiNi0.9Mn0.1O2//Gr cell: 3.0-4.2 V, 30°C, ~120 cycles
Coin Cell - typical data
• Cell capacity and specific energy 

are lower than LiNi0.95Co0.05O2 cell 
but can be increased by cycling 
full cell to 4.3 or 4.4 V 

• Capacity fade and impedance rise 
are small relatively to that of the 
LiNi0.95Co0.05O2//Gr cell 

3-electrode cell data
• Cell impedance increase arises 

at the positive electrode.
• Negligible ASI changes at the 

negative electrode

Capacity Fade 
(C/20) ~ 5%

Cell ASI rise 
(~3.8 V) ~ 20%

Oxide electrodeGraphite electrode
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Technical Accomplishments and Progress

LiNi0.9Mn0.05Co0.05O2//Gr cell: 3.0-4.2 V, 30°C, >350 cycles
Electrochemical Performance
• Cell capacity and specific energy 

are comparable to those of  
LiNi0.95Co0.05O2 cells 

• Capacity fade and impedance 
rise are much smaller than those 
of LiNi0.95Co0.05O2//Gr cells

• As in the other oxides, the 
positive electrode is the main 
contributor to cell impedance rise

• Even after > 350 cycles, the 
negative electrode ASI rise  is 
negligible. This observation 
suggests that the graphite SEI 
remains a good conductor of Li+
ions

Full Cell
ASI rise ~ 104%

Oxide electrode ASI 
from 3-electrode cell

After >350 cycles

After formation

Best Performer
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Technical Accomplishments and Progress

Enhancing LiNi0.94Co0.06O2//Gr performance 
with electrolyte additives: 3.0-4.2 V, 30°C 

Combination of MS 
and PyDMA improves 
capacity retention and 
lowers impedance rise
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Conductivities similar for electrolytes 
with 1.1 M LiPF6 + 0.1 M LiDFP or 
1.2 M LiPF6 (Gen 2 electrolyte) 
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Technical Accomplishments and Progress

Suppressing impedance rise in LiNi0.94Co0.06O2//Gr cells 
using salt combinations in the electrolyte
LiPF6+LiPF2O2 (LiDFP) dissolved in EC:EMC (3:7 wt/wt) solvent – 3.0 – 4.2 V, 30 °C tests

Capacity fade similar for electrolytes 
with 1.1 M LiPF6 + 0.1 M LiDFP or 
1.2 M LiPF6 (Gen 2 electrolyte) 

Impedance rise is significantly 
lower for the electrolytes with 
1.1 M LiPF6 + 0.1 M LiDFP

Electrolyte modifications can improve cell calendar and cycle life

ASI rise (3.8 V)
100% vs. 30%



Differential Electrochemical Mass Spectroscopy (DEMS) is used to examine gas generation (3-4.2 V cycle)

Technical Accomplishments and Progress

Gas evolution in full cells with LNO-based oxide cathodes

LiNi0.94Co0.06O2

O2

CO2

LiNi0.9Mn0.1O2

O2

CO2

LiNi0.95Co0.05O2

O2

CO2

LiNi0.9Mn0.05Co0.05O2

O2

CO2

• Significant amounts of O2 and 
CO2 are not observed for 
LiNi0.9Mn0.05Co0.05O2 and 
LiNi0.9Mn0.1O2 cells during cycling

• Moderate CO2 generation is 
observed for LiNi0.95Co0.05O2 cell, 
mostly during the voltage hold

• O2 release is clearly observed 
during voltage hold for the 
LiNi0.94Co0.06O2 cell. Large 
amount of CO2 is generated 
during the cycle. This gas 
generation could be associated 
with oxide synthesis conditions 
and the presence of carbonate 
impurities on the surface.



0 25 50 75 100 125 150 175 200 225 250
3.0

3.2

3.4

3.6

3.8

4.0

4.2

C
el

l v
ol

ta
ge

, V

Capacity (mAh/goxide)

 Pristine
 Aged

0 25 50 75 100 125 150 175 200 225 250
3.0

3.2

3.4

3.6

3.8

4.0

4.2

C
el

l v
ol

ta
ge

, V

Capacity (mAh/goxide)

 Pristine
 Aged

0.0 0.2 0.4 0.6 0.8 1.0

3.0

3.3

3.6

3.9

4.2

Vo
lta

ge

Normalized capacity

 Pristine
 Aged

0.0 0.2 0.4 0.6 0.8 1.0

3.0

3.3

3.6

3.9

4.2

Vo
lta

ge

Normalized capacity

 Pristine
 Aged

Technical Accomplishments and Progress

Harvested cathode electrochemistry: 3.0-4.3 V, 30°C, C/100

LiNi0.9Mn0.05Co0.05O2
vs. Li

LiNi0.94Co0.06O2
vs. Li

Capacity loss of LiNi0.94Co0.06O2 > LiNi0.95Mn0.05Co0.05O2. “Normalized-capacity” plots 
suggest crystallographic changes in LiNi0.94Co0.06O2 but not in LiNi0.95Mn0.05Co0.05O2. 

Electrodes harvested from full cells after ~350 cycles
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Technical Accomplishments and Progress

Harvested cathode XPS show aging-related surface-changes
X-ray photoelectron spectroscopy data from LiNi0.94Co0.06O2//Gr cells with Gen2 electrolyte
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Technical Accomplishments and Progress

Harvested anode XPS show aging-related SEI changes
X-ray photoelectron spectroscopy data from LiNi0.94Co0.06O2//Gr cells with Gen2 electrolyte



Structural analysis of oxide cathodes by solid state NMR
Technical Accomplishments and Progress

Solid State NMR is used to directly observe bulk and surface lithium environments within different oxide compositions 
and to determine structure changes that occur during cycling

Introduction of Mn in the oxide bulk broadens 6Li NMR peaks, 
suggesting more structural disorder and partial randomization 
of transition metal distribution. No Mn clustering is observed. 

Surface lithium quantified via 7Li NMR.
LiNi0.94Co0.06 shows highest surface Li content ( 8%)

Cycled samples show 6Li NMR peak shifts due to increase 
in the oxide’s average TM oxidation state that results from a 
decrease in its Li content during cycling. Peak width 
decrease for LiNi0.90Mn0.05Co0.05 suggests higher Li mobility.

Lithium local environments, pristine and 
cycled full cell (3-4.2V, ~120 cycles)



Differential scanning calorimetry (DSC) of delithiated oxides

Multi-exothermic peaks are observed for all 4 charged oxide active materials
Total heat generations of all 4 oxide samples are similar to each other

Reusable Steel High Pressure 
Capsules, from Perkin Elmer
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Technical Accomplishments and Progress

DSC data are used to evaluate the life and safety 
characteristics of battery materials
• After 3 formation cycles at C/10 rate, the oxide-

electrode was charged to 4.3 V vs. Li/Li+
• Recovered electrode material was mixed with 

Gen2 electrolyte and sealed in sample holder
• DSC scan was from 50°C to 370°C at 5°C/min 

Gen2 Electrolyte: EC:EMC (3:7 w/w) + 1.2M LiPF6



In situ spectroscopic analysis of oxide-electrolyte interfaces
Technical Accomplishments and Progress

In situ ATR-FTIR cells show repeatable electrochemical performance 
and strong FTIR vibrational absorption signals at cathode surface
• Near-surface (de)solvation (ions–solvent molecules) changes during 

galvanostatic cycling (C/10, 3.0-4.5 V vs Li/Li+) observed in Gen2 
electrolyte (1.2 M LiPF6 in EC:EMC, 3:7 wt%)

• NMC622 cathode metal-oxygen vibrational absorptions are sensitive 
to local order and Li+ vacancies

• Evolution of cathode-electrolyte interphase (CEI) components seen

EC, C-OEMC, C-O

Have measured characteristic FTIR peak signatures (e.g., position, shift, 
and intensity) of electrolyte, cathode, and CEI in case study of NMC622

poly-EC

carbonates
CO3

2-

Data from NMC622 vs. Li cells



In situ XPS to study surface chemistry of LNO-based oxides

H2O quickly reacts with Li metal and forms Li2O that completely passivates Li
Li2CO3 on LiNiO2 seems to increase with H2O dosing
Sputtering to clean the surface of LiNiO2 creates metallic Ni

Technical Accomplishments and Progress

In situ XPS is used to evaluate surface reactivities of 
LNO-based oxide materials to environmental and 
electrolyte molecules
• To validate the in-situ gas-dosing approach for 

surface study, H2O molecule were dosed to Li 
metal surface up to 50 Langmuir

• H2O was dosed to LiNiO2 up to 100 Langmuir
*L = Langmuir = 
equivalent of 1 s 
exposure at 10-6 Torr

XPS of LiNiO2 before and after H2O dosing

XPS of metallic Li before and after H2O dosing
Proof-of-concept test with Li metal
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Proposed Future Research 

Any future work is subject to change depending on funding levels

• Continue ongoing diagnostic tests and determine performance degradation mechanisms
• Electrochemical (3-electrode cells, symmetric cells) and physicochemical (XRD, NMR, TEM/STEM, 

XAS, gas analysis, etc.) tests will continue to provide valuable information
• Continue development of in situ/operando diagnostic techniques

• Scale-up additional oxide compositions and evaluate using standard protocols 
• Identify compositions with little or no cobalt that perform as well or better than NMC622
• Examine compositions that have higher Mn content, such as derivatives of LiNi0.5Mn0.5O2

• Develop oxide particle coatings and new electrolytes to mitigate performance loss 
• Identify coating techniques that can be easily scaled-up
• Find electrolyte systems that show improved performance in thermal abuse tests

• Establish electrochemical models to explain performance of low-Co oxide systems
• Models are needed to explain changes in interfacial transport and kinetic parameters with SEI and 

surface modifications, explain parasitic currents during calendar-life holds, etc.



Summary 
• Low Co oxides that are variants of LiNiO2 have been synthesized and scaled up to ~100 g levels 

• Diagnostic tests conducted on CAMP-fabricated electrodes containing LiNi0.94Co0.06O2, LiNi0.95Co0.05O2, 
LiNi0.9Mn0.1O2 and LiNi0.90Mn0.05Co0.05O2

• Half-cell and Full-cell standardized cycling protocols developed to examine these oxide materials
• Electrochemical cycling data from full cells indicate that LiNi0.90Mn0.05Co0.05O2 and LiNi0.9Mn0.1O2 show 

higher capacity retention and lower impedance rise than LiNi0.95Co0.05O2 and LiNi0.94Co0.06O2

• Tests in Reference-electrode cells indicate source of impedance rise
• Oxide-positive electrode is the dominant contributor; negligible ASI rise at the graphite-negative electrode

• Tests with harvested-electrode indicate oxide particle isolation and structure changes
• Evidence for bulk-crystallographic changes in LiNi0.94Co0.06O2 but not in LiNi0.90Mn0.05Co0.05O2

• Gas analysis studies reveal oxygen evolution from some oxides
• Oxygen evolution observed for LiNi0.94Co0.06O2 but not LiNi0.90Mn0.05Co0.05O2 or LiNi0.9Mn0.1O2

• New electrolyte compositions show promise for improving capacity and power retention
• Tests using in situ synthesized compounds, HF getters, and dual salt electrolytes

• Solid state NMR, Differential scanning calorimetry, X-ray photoelectron spectroscopy, in situ FTIR, 
in situ Raman and in situ XPS methodologies have also been developed

• Data from these tests are being used to identify mechanisms associated with oxide performance loss and 
to develop low-Co oxides that meet energy density, power density, life and safety goals of the program
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Effect of high voltage on capacity

Using Protocols: Pre- and Post-hold capacities

Pre-hold cycle 
(cycle 6)

Post-hold cycle 
(cycle 9)

Potentiostatic 
hold (cycle 7)

Pre- and Post-hold capacities give insight into cathode damage/activation

Ni:Co compounds lose more capacity after subjected to 4.5 V hold 
than Mn-containing compounds

High-voltage holds can 
degrade the electrolyte and 
the cathode.  Cathode 
stability  is probed by 
evaluating the discharge 
capacity both before 
(Prehold) and after 
(Posthold).  Large differences 
indicate more damage.



Gas Analysis methodology
Differential Electrochemical Mass Spectroscopy (DEMS) is used to investigate interfacial stability 
of oxide-cathodes by studying the gases generated during electrode-electrolyte reactions 
• Gases generated are directly sampled into quadruple mass spectroscopy from pouch cells and 

analyzed in a real-time manner.
• Electrochemical testing conditions can be easily controlled in terms of C-rate, upper-cut off 

voltages, temperature, etc.
• Standardized protocols have been developed to compare gas generation results among 

different cathode materials.
• Gas concentration is calibrated using standard gases.

Pouch Cell configuration

Cathode: LNO-based oxides
Anode: Graphite (SLC1506)
Electrolyte: 1.2M LiPF6 in EC:EMC (3:7 w/w)
Fill factor: 3x pore volume



In situ Spectroscopic Analysis of Model NMC622 Cathode

• Develop a windowed coin cell 
and surface-enhanced Raman 
spectroscopy (SERS) technique.

• Demonstrate reliable/repeatable 
electrochemical performance 
with a NMC622 on Al mesh/Li 
half cell (C/10, 3-4.3 V in Gen2).

Have correlated specific cathode chemistries (e.g., transition metal 
redox and oxygen evolution) to FTIR signatures using complimentary 
techniques (e.g., Raman).

Correlation of solvent structure, cation ordering 
and cathode redox behavior (by ATR-FTIR)

In situ Raman/SERS analysis with a newly developed cell

Li+ ordering
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